
Version 0.3

Axantum Strong Software Licensing

Svante Seleborg

Axantum Software AB
svante@axonadata.se

Abstract
This specifies the functionality and technical details of the
Axantum Strong Software Licensing feature. The technical
background and usage of respective programs are described.

The licensing software is implemented in the AxCrypt file
encryption software, available as an open source application
as well as licensed by various OEM vendors.

Although AxCrypt is free and will remain so, both itself and
the software licensing part described here, is available under
commercial terms from Axantum Software, and AxCrypt with
this software licensing scheme is intended to also serve as a
strong technology demonstration for interested OEM parties.

Axantum Strong Software Licensing offers two relatively
unusual features, still hard to find implemented in free or
commercial software today, in 2004:

• Self-signed code and configuration using strong elliptic
curve cryptology conformant to international standards.

• Compact short signature technology using relatively
strong elliptic curve cryptology enabling keyboard entry
of a true digital signature. This is one of the first
available implementations of shortened ECDSA
signatures based on published research and built on top
of international standards.

1. Introduction
Software Licensing is a variation of Digital Rights
Management, i.e. the art of retaining control of works
distributed digitally – the challenge being that faithful copies
of digital works are trivially made and distributed.

Retaining control over distributed works in the digital world
is in this context equal to restricting the possibilities of
unlimited copying, usage and distribution in one way or
another.

AxCrypt contains a software licensing and digital signature
verification feature, which has the following design goals:

• Copying as such is not restricted, i.e. the software is not
tied to a single machine or media – although that may be
implemented as well within the scheme.

• The risk of widespread copying, distribution and the
therefore unlicensed usage is reduced by requiring a
digitally signed license-to-use, which positively
identifies the licensee. Thus – if copies are distributed,
the source may be traced.

• The solution is cryptographically strong; it is not an
obfuscating scheme.

• It allows the same binary compiled program executable
files to be used both in a licensed and a non-licensed
mode.

• As a benefit to the user, the scheme also provides strong
digital signatures over essential program files, ensuring
self-validation resulting in safe and uncontaminated
execution.

• “Non-validated”, externally signed, XML is used for
configuration.

• While circumvention can always be achieved by skilful
patching of the executable, this will by definition also
lead to loosing the program validation feature, thus a
patch does not retain full program functionality.

• The license-to-use is a relatively strong digital signature
typically over a user-identifying string issued such as an
e-mail address, issued by the software manufacturer.

• Forging of program-code and configuration validation
signatures is not computationally feasible.

• Forging of license-to-use signatures is computationally
hard, though possibly feasible in the future as Moore’s
law does its work.

• The license-to-use signature is short and compact enough
so it’s reasonable to manually enter with the keyboard,
although cut-and-paste is recommended.

Copyright © Svante Seleborg, 2004, All rights reserved.

Version 0.3

2. How does it work?
The software consists of a number of executable files,
specified in the configuration XML-file, for AxCrypt,
typically AxCrypt.exe, AxCrypt.dll, AxCryptM.dll and
Notify.exe.

The configuration XML-file, typically named Config.xml,
contains all static program configuration information that is
not stored in the registry. This includes signatures for the
component programs, visible names etc. This is never
modified after distribution, as it is digitally signed in an
external file, the Signature XML.

The Signature XML-file, typically named Sigs.xml contains
signatures and other dynamic information. This file is not
signed.

AxCrypt is hard-coded to find the Signature XML in the same
directory as the executable, and is typically named Sigs.xml.
The name is hard-coded in the executable. If it does not find
it, startup fails. Sigs.xml refers to the configuration XML-
file. If it is not found, startup fails.

2.1. Signature XML - Sigs.xml

Sigs.xml typically contains:

<Signatures>
 <Config>
 <Signature File="Config.xml" >
 HexString
 </Signature>
 </Config>
 <Licenses>
 <Signature Terms="Full"
Licensee="User Name etc">
 Base34String
 </Signature>
 </Licenses>
</Signatures>

Upon startup, AxCrypt attempts to locate the Signature XML
file, by way of a hard-coded name like Sigs.xml, in the same
directory holding the executable. The main purpose of
Sigs.xml is to hold the signature of the Configuration XML.
This makes for easy and unambiguous signing and
verification. The Signature XML may also hold system-wide
blanket license signatures issued with the distribution.

User-entered, volatile licenses may be stored in any medium
appropriate for the environment, typically the registry for
Windows – or if appropriate by modifying the Signature
XML, this requires upgrade procedures to merge XML
though.

Startup proceeds by parsing the Signature XML, and locating
the <Config> tag. It starts by checking the specified signature
against the file found. If it does not match, start up fails. The
public key is hard-coded inside the AxCrypt executable. The
private key is the property of Axantum.

As a consequence only Axantum Software can produce valid
Configuration XML-files; vendors or other parties cannot
unless a patch or a recompile inserts a different public key
inside the executable.

Program upgrade is performed by replacing the appropriate
executables, Signature XML and the Configuration XML

If several license signatures are found, all are matched
against each entry in the list of license types in the
Configuration XML.

2.2. Configuration XML – Config.xml

Config.xml does not change during the life of a version
installation and typically contains:

<Configuration>
 <Self File="AxCrypt.exe" />
 <Signature File="AxCrypt.exe">
 HexString
 </Signature>
 <Signature File="AxCrypt.dll">
 HexString
 </Signature>
 <Signature File="AxCryptM.dll">
 HexString
 </Signature>
 <ShortName>
 AxCrypt
 </ShortName>
 <LongName>
 Axantum Encryption
 </LongName>
 <RegistryPath>
 Axantum Software\AxCrypt
 </RegistryPath>
 <Restrictions Days="20" Uses="25">
 AxCrypt
 <Verifier>
 HexString
 </Verifier>
 <Terms Days="" />
 <Terms Uses="" >
 Small
 </Terms>
 <Terms Days="" Uses="" >
 Full
 </Terms>
 </Restrictions>
</Configuration>

As Config.xml is signed upon distribution it can never
change, and must only contains things which are static
from installation and onwards. If upgraded, it must be
matched with a corresponding Signature XML – thus
as long as the embedded public key remains inviolate
the configuration can not be modified for a given
executable. This self-testing introduces an exceptional
resiliency against manipulation and programming
errors.

If there is no <Restrictions> tag, no restrictions apply.
The value of the <Restrictions> element identifies the
restriction group.

The internal working of license restrictions are in
essence beyond the scope of this document, it’s up to
the main program to enforce the restrictions until a

Copyright © Svante Seleborg, 2004, All rights reserved.

Version 0.3

valid license-to-user is presented and entered into the
Signature XML.

The attributes of the <Restrictions> element list the
default restrictions that are in place.

The list of <Terms> is interpreted in order, as are the
attributes. Each <Terms> element that does not have a
valid license is ignored. If it has a valid license, it’s
attributes are applied. Empty attributes remove the
restriction. Only restrictions are listed – never rights.
The default is thus all rights, contrary and in reverse to
many other rights systems. If a <Terms> element does
not specify a given restriction attribute, that <Terms>
element never has any effect on that restriction.

It is up to the implementation to recognize and
interpret various restriction attributes. Non-recognized
restrictions are simply ignored. Typically for AxCrypt
there will be support for a counter and possibly a day
counter from installation after which further
encryptions is not allowed, but apart from that the
program continues to work.

The free version, which of course should have no
restrictions, is distributed with a license signature in
the Signature XML granting full rights, and a
<Restrictions> section in the Configuration XML. This
is only useful for the free version, since the
Configuration XML requires that the executable be
named AxCrypt.exe, and that the registry settings are
stored in the place for the free version.

To enable independent developers to compile and run
AxCrypt a Configuration XML / Signature XML pair is
distributed which does not require any signed files at
all. When using this Configuration, a warning dialog is
shown which advises the developer to turn the whole
signature feature off for independent development,
since the signing tools are not distributed. This is also
used for debugging purposes.

Circumvention requires patching the program
executable to either skip the tests for validity or insert a
new public key and then sign everything with the
corresponding private key.

2.3. What is required to break the system?

Essentially patching the program is required to break
the system from an executable point of view. Obviously,
it is always possible to simply recompile the source
since it is open for view and download, but the point is
that it is not feasible to install a protected version and
then patch it without loosing the self-validation feature.
Possible, yes, but it requires a bit of work – work that
requires significantly more effort than simply down-
loading the free version.

It is not computationally feasible to forge the
configuration XML. The program has a hard-coded
public key and it requires finding and validating the
configuration XML before starting.

It is at least computationally very hard to forge a
license-to-use, probably it is also infeasible at the time
of writing and for years to come.

Obviously, if the same binary is used in different
contexts – the free version or varying vendors OEM-
versions, it’s possible to replace the configuration XML
and signature XML with data obtained from the free
version. But since the executable must also be renamed
to the free version, the registry data moved etc – what is
thus achieved is an installation of the free version in an
extremely round-about way. That is no problem, as it’s
no secret there is a free version – but that comes
without any support, any distribution etc. For a fully
commercial software, it’s no limitation at all since there
will be no free signed configuration files available.

2.4. The licensing process as viewed by a user

A user purchases the program, and gets an installable
on some media, including online download.

Along with this, she receives a proof of purchase, or
serial number, or any other token that may be presented
at the vendors web site or via e-mail, phone, fax or
phone or even in direct contact with the vendor. This
mechanism is not part of the AxCrypt Software
Licensing.

The vendor, by any mechanism of her choice, then
receives a string representing the user identity.
Typically this will be the users e-mail, real name or
similar. Validating this identity is not part of the
licensing scheme.

The user, in return, receives a communication in any
form consisting of the identity string and a license. The
identity string may look like this (only characters and
letters are significant, and the case is not):

svante.seleborg@axondata.se
SVANTESELEBORGAXONDATASE

Both above are identical. The purpose is to be flexible if
the string is typed manually.

The license takes the form of 36 significant characters,
optionally grouped for easier legibility, and may look
like this:

IE5EPX-5IEDU3-6XJWYB-AEB3E5-MZIC7A-N4FCC7

Copyright © Svante Seleborg, 2004, All rights reserved.

Version 0.3

The possible characters include A-Z except ‘O’ and 1-
9, for a total of 34 different characters and the case is
not significant. Note that letter ‘O’ and digit zero are
excluded to avoid confusion.

The user, upon receiving these to strings, is prompted
in the same communication to launch the license
wizard, which is a simple program where the two
strings are entered in two respective edit boxes, after
which the user presses ‘OK’. If they are valid and
correctly entered, the program now runs without any
restrictions. If not, the user is prompted to try again.

2.5. What are the vendor tools?

The vendor receives one command line tool in a
Windows and a FreeBSD/Linux version, along with a
private key generated by Axantum Software. The
private key generation program is not made available to
external vendors, but private keys are generated upon
request according to agreement (priv.key below, a small
text-file of a few hundred bytes).

The tool, AxSigLic (or axsiglic on FreeBSD/Linux)
takes the following arguments:

axsiglic –r priv.key [-t type] –m “user-
id-string”

The resulting license/signature in the above-mentioned
36-significant character format is produced on stdout,
redirectable at will. The type/label is prepended to the
licensee user-id-string and after canonicalization used
as the message to sign. The canonicalization removes
all non-alphanumeric characters and converts all to
lowercase ASCII/Ansi 8-bit codes.

The private key file is a raw hex encoding, as produced
by AxKeyGen.

The tool may be incorporated into scripts, web-pages,
GUI-programs etc according to whatever the vendors
need is.

2.6. What are the private tools?

To explain and document the full workings a
description of the Axantum private tools follows. These
are not distributed in either source or binary form to
discourage generation of ‘false’ private keys.
Distribution and generation of ‘false’ private keys is not
a security issue as such, since it still requires
recompilation for modification of the binaries to be of
use.

2.6.1. axkeygen – Key Pair Generator

Private keys are generated very seldom; Axantum has
one and will under normal circumstance never require
another one. The same applies for vendors and

technology OEM’s – one is generally enough. Thus the
usage frequency alone makes the non-distribution of the
tools reasonable. The tools are not documented or
packaged in release quality either. They are for
Axantum internal use only.

The private key generator can generate two types of
key-pairs:

• License-to-use key-pairs. The private key is
used to sign user identifications to produce the
short license-to-use signatures consisting of 36
characters as explained elsewhere.
The public key will normally be distributed in
signed XML to be used by applications to
validate license-to-use signatures.

• Code validation key-pairs. The private key is
used to sign code, configuration files and any
other data where the signature is never typed
by a human, but carried by higher bandwidth
means such as files or the internet.
The public key is typically either compiled
statically into code, or placed in signed XML.

It is called on the command line as follows.

axkeygen [–l | -s] –[c|h]u "pub.ext” –[c|
h]r "prv.ext"

-l long signature validation key-pairs.
-s short signature license key-pairs.
-c output is a C code fragment
- h output is raw hex
-u file name for the public key
-r file name for the private key

Default output is XML.

2.6.2. axsigxml – Configuration signer

Using the private validation key, a XML file is parsed
and the appropriate signatures for referenced files are
generated etc. It takes as input an existing
Configuration XML file, and produces as output a
version with the appropriate signatures.

Usage:

axsigxml [-r prv.xml] [-p searchpath] [-t
tag:file]

-r private key to sign with. Made with axkeygen.
-p folder to search for files in. May repeat.
-t replace element with contents of file.

It reads stdin, and produces to stdout. Elements named
<Signature> with an attribute File are used to find files,
generated signatures, and then output them as element
data.

Copyright © Svante Seleborg, 2004, All rights reserved.

Version 0.3

2.7. Technical details

2.7.1. Rights Manager

Having established signed and secured configuration
data and binary executable integrity, there’s a need to
actually manage the rights conferred by the license.
Generally speaking it’s about limiting the functionality
in run-time conditional on both static and dynamic
checks.

Static tests refer to simply limited license, for example
simply restricting functionality. This is a limitation that
is is statically tied to the license given – a new, better,
license needs to be issued for the functionality to be
available.

Dynamic tests refer typically to time or number of uses
restricted functionality. I.e. after 30 days, limit the
functionality or after 25 uses. These differ from the
static kind in that they need to dynamically store and
update data in a reasonably secure store that is at least
not trivial to manipulate. For example, having a use
counter in the registry falls to a trivial resetting attack.

The challenge is that “by definition” nothing offline is
truly secure, except, but one axiom in this whole
context is that we regard the executable file as
inviolatable as it is signed. If this is bypassed, there is
nothing to stop simply modifying the executable to skip
the limiting tests, or simulate a full valid license.

The AxCrypt Rights Manager is a program API which
takes as input an internal representation of an XML
tree representing the Signature XML and one
representing the Configuration XML. The license
conditions are expressed as a number of restrictions
that apply if the license is not valid.

To store the state of use-counts etc, the following
strategy is used. It is a low-bandwidth strategy, only a
few bytes of information may be stored in this manner,
but it should suffice. The main purpose is to ensure
there are no pre-installed tools to easily delete the info.

A key container is created with a pattern that is
recognizeable, i.e. begins with AxCrypt for example.
Directly following this, hexencoded, follows the use-
state structure as defined by the implementation.

When no matching key container is found, it is
assumed that it’s a new install and default zero
counters are created.

The state is updated by creating a new key container
and deleting the old.

Uninstall removes all information, except the key-
container it-self. This will let a subsequent reinstall
continue from where it previous installation left off.

To defeat, someone must write a program that
enumerates the key containers and delete the one used
here, whereupon the program of course reverts to new
installation state at the next startup. If this becomes a
problem, an arms race can be started where a key-pair
is generated and stored there too, and used for various
purposes to stop simple deletion from resetting the
state.

2.7.2. Signature technology

(To be completed after implementation is complete)

Elliptic curves over GF(p) are used. For the internal
validation of the configuration file, one of the
recommended 384-bit curves is used with a standard
ECDSA signature algorithm.

The signature over the user identication which produces
the license-to-use, is done with one of the
recommended 128-bit curves. The signature process is
modified according to principles outlined in the
references, by letting the parameter ‘r’ in the signature
be a truncated hash – here set to 55 bits, making a total
of 183 bits which is what fits into 36 base 34 positions.
The choice of parameters here may change, and there’s
a perception that it is possible to add a work-factor
increasing method to the hashing so as to increase the
effective security offered by the admittedly short hash of
55 bits. Please note that in this application the birthday
paradox weakness should not apply – a brute force
attempt to force a signature requires finding a message
that hashes to the same hash as a given message, not
just to find two which collide. A different possible
tradeoff is to use a 112-bit curve with up to 71 bits of
the hash. The current choice is made to protect the
private key as well as possible. The weak hash should
not affect the strength of the curve as such, only the
ability to generate a single false signature. It is not
entirely clear exactly what the complexity is to force
this combination of parameters. Normally the scheme is
regarded to give equivalent complexity as the regular
scheme over the same curve with a hash of half the size
of the curve, in this case 64 bits. 128-bit curves are also
small, but currently beyond demonstrated abilities to
force. In 2002 a 109-bit curve challenge was solved by
utilizing a massive amount of computing power
including 10,000 computers (mostly PCs) running 24
hours a day for 549 days.

2.8. Intellectual Property Rights

A reasonable amount of effort has been spent to
determine if this implementation or its techniques are
covered by any patents or other IPR. No such evidence

Copyright © Svante Seleborg, 2004, All rights reserved.

Version 0.3

has been found. The techniques around ‘Signcryption’
are probably protected, but that is not what this
application is about. The reference is only used for the
shortening of the ECDSA signature. All algorithmic
code is from the Crypto++ library which is in the public
domain, and no warnings about IPR are evident
concerning this usage.

3. References
[1] Zheng, Y., ``Signcryption and Its Applications in

Efficient Public Key Solutions”'.
[2] Zheng, Y., “Digital Signcryption or How to Achieve

Cost(Signature & Encryption) << Cost(Signature) + Cost
(Encryption).

[3] Zheng, Y., Imai, H., “How to construct efficient
signcryption schemes on elliptic curves”, Information
Processing Letters 68 (1998) 227-233.

[4] Johnson, D., Menezes, A., Vanstone, S., “The Elliptic
Curve Digital Signature Algorithm (ECDSA)”, Certicom
Research, Canada.

[5] Menezes, A., Oorschot, P. van, Vanstone, S., “Handbook
of Applied Cryptography”, CRC Press, 1996.

[6] Dai, W., “Crypto++ 5.2.1”, http://www.eskimo.com/
~weidai/cryptlib.html.

Copyright © Svante Seleborg, 2004, All rights reserved.

